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This paper focuses on the channeling of energy from electronic to nuclear degrees 
of freedom in electron-polyatomic molecule collisions. We examine the feasibility of 
attacking the full scattering problem, both the fixed-nuclei electronic problem and 
the post-collision nuclear dynamics, entirely from first principles. The electron- 
COZ system is presented as an example. We study resonant vibrational excitation, 
showing how a6 initio, fixed-nuclei electronic cross sections can provide the neces- 
sary input for a multi-dimensional treatnlent of the nuclear vibrational dynamics. 

1 Introduction 

For almost two decades, starting in the late 1970’s, much of the ab initio theory on electron- 
molecule collisions was concerned with the technical problem of developing robust methods 
for solving the fixed-nuclei problem posed by electron scattering from a non-spherical, po- 
larizable, charge distribution with full allowance for exchange. We should say at the outset 
that by ab initio methods we mean those which treat the electronic Schrodinger equation 
as a many-electron equation describing the motion of N + l  indistinguisable particles. This 
is not meant to diminish in any way the contribution of those who have pursued model 
potential approaches in which the effects of target polarization are represented by a local 
potential. While such approaches have proved successful in a number of cases, they are nev- 
ertheless ad hoc in character in the sense that they cannot be systematically improved and 
they are intrinsically limited in the types of collision phenomena that they can treat (elec- 
tronically elastic processes, in general). Of the many approaches that have been attempted, 
only a few have withstood the test of time and proved robust enough to be applicable in 
general multi-electronic-state expansions on polyatomic targets. Significantly, the ab ini- 
tio methods that have survived - R-Matrix, multi-channel Schwinger and complex Kohn - 
are all variational in nature and make use of algebraic expansions of the fixed-nuclei wave 
function rather than direct numerical solution of the electronic Schrodinger equation. 

While the bulk of ab initio computational work on electron-polyatomic collisions has 
tended to focus on the fixed-nuclei electronic problem, it is important to bear in mind that 
the nuclear dynamics problem, i.e. the processes that control the flow of electronic energy 
into nuclear degrees of freedom, are of fundamental importance in studying electron colli- 
sions with polyatomic targets and are key to developing an understanding of electron-driven 
chemistries in a variety of contexts, from technological applications such as understanding 
the production of reactive species in low-temperature processing plasmas to elucidating the 
behavior of secondary electrons produced by low-dose radiation in biological environments. 

In discussing the nuclear dynamics problem, it is useful to distinguish between resonant 

1 icpeac: submitted to Rinton on August 13, 2001 11 



and non-resonant collisions. The non-resonant dynamics problem for polyatomic targets 
presents some formidable challenges. For example, non-resonant electron-impact dissoci- 
ation of a polyatomic can involve many excited electronic states. Tracking the dynamics 
on multiple electronic surfaces, where the reactive fragments can be produced with several 
eV of energy, is a daunting task. This problem remains largely unexplored. For resonant 
electron-molecule collisions, on the other hand, there has been a fair amount of theoreti- 
cal work, but it has been largely semi-empirical in nature, relying on model potentials to 
carry out the nuclear dynamics. Moreover, with a few notable exceptions 1 , 2 9 3 ,  most of 
the work that has been carried out, both ab initio and semi-empirical, has made use of 
one-dimensional models of the nuclear motion that is only appropriate for diatomic targets. 
The question we wish to explore here is whether it is feasible to treat a resonant electron- 
polyatomic problem in its entirety - both electronic and nuclear - from first principles. The 
problem we have chosen to illustrate the discussion is e- + CO2 scattering, a system which 
has been studied for many years and one which continues to attract the attention of both 
theorists and experimentalists. 

While the first experiments on e- + COz collisions date back to 1927 with the work of 
Ramsauer, the computational history on this system really began with the pioneering work 
of Morrison, Collins and Lane in 1977 4,  who used model local potentials to reproduce the 
two main features seen in the measured low-energy cross sections, namely, the dramatic rise 
in the elastic cross section below 2 eV and the pronounced resonance structure centered at 
3.8 eV. While numerous model studies have been carried out on this system over the past 
two decades, the first ab initio study to conclusively show that the low-energy rise in the 
elastic cross section was the result of a virtual state was carried out by Morgan in 1998 
using the R-matrix method. The multi-channel Schwinger calculations of Lee et a2. and 
the complex Kohn calculations of Rescigno et a2. were the first ab initio studies to achieve 
quantitative agreement with experiment on both the low-energy behavior of the total cross 
section and the position of the resonance peak; the latter study also obtained differential 
cross sections in good accord with recent measurements Our purpose here is to examine 
the structure of the resonant vibrational excitation cross sections in more detail using an 
entirely ab initio attack on the problem. 

2 Fixed-Nuclei Electronic Problem 

2.1 Complex Kohn Method 

Our approach to low-energy electron-polyatomic molecule scattering is based on the complex 
Kohn variational method, which uses a stationary principle for the T-matrix: 

The trial wave function for the ( N  + 1)-electron system is expanded as 

*ro = CA[@r(T;..~jv)Frr,(TtN+i)] + xdio@p(G..?jv+i) (2) 
r fi  

where the first sum is over electronic target states, @r , A  antisymmetrizes the coordinates 
of the incident electron with those of the target electrons and the second sum contains 
square-integrable, ( N  + 1)-electron terms that describe correlation and polarization effects. 
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Figure 1. Left panel: fixed-nuclei integrated cross sections for e- + CO2 at equilibrium geomerty. Right 
panel: Comparison of fixed-nuclei, adiabatic-nuclei and measured total cross sections for e- + CO2". 

In the Kohn method, the scattering functions are further expanded in a combined basis 
of Gaussian(&) and continuum(Ricatti-Bessel, js,and Hanke1,hF) basis functions: 

The T-matrix elements, TFo\mo, are the fundamental dynamical quantities from which all 
fixed-nuclei cross sections are derived. 

For the calculations on C02, we have restricted our attention to the electronically elas- 
tic region, so the sum over target states in Eq. (2) includes only the ground state and we 
can drop the IT, superscript on the T-matrix elements. For the ground state of C02, we 
employed a self-consistent field (SCF), restricted Hartree-Fock wave function. To describe 
the dynamic polarization of the target, we also include ( N  + 1)-electron terms in the trial 
function that represent asymptotically decaying closed channels. These terms are chosen 
by singly exciting the occupied target orbitals into unoccupied viutual orbitals. The proce- 
dures used for this construction vary according to the symmetry under consideration. For 
the symmetries in which there are no low-lying shape resonance, i.e. all but 211u, we con- 
struct "polarized-orbitals" for the virtual space, single excitations into which give a good 
representation of the static target polarizability. For the resonance symmetry, we use a 
"relaxed-SCF" procedure which only includes symmetry- and spin-conserving single exci- 
tations of the target, thereby capturing the dominant physical effect of a shape resonance 
which is relaxation of the target in the presence of an extra electron. These procedures, 
along with other parameters of the calculations, are fully described in ref. 7. 

Figure 1 shows the fixed-nuclei total cross sections, along with the values for the individ- 
ual symmetry components, that were computed at the equilibrium geometry of the target, 
i.e. linear geometry with a CO bond distance of 2.1944 bohr. These results highlight the 
two main features of the cross sections previously mentioned. The dramatic rise in the cross 
section below 2 eV is clearly associated with the "Cg+ component of the total cross section 
while the resonance feature near 4 eV is associated with the 'nu component. 
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2.2 Adiabatic Nuclei Approximation 

The preponderance of electron-molecule calculations reported in the literature were per- 
formed at the equilibrium geometry of the nuclei. These cross sections correspond, in 
general, to rotationally and vibrationally summed quantities in cases where the internal 
target motion of the nuclei can be neglected. These assumptions frequently break down in 
resonance regions. The fixed-nuclei results shown in Fig. 1, when compared to experiment, 
produce a resonance feature whose peak value is too high and whose width is too broad. 
This deficiency arises from a neglect of vibrational motion. 

The adiabatic nuclei approximation represents a first step in accounting for nuclear mo- 
tion. One assumes the Born-Oppenheimer approximation to be valid for the scattering 
states and writes them as products of electronic continuum functions times target vibra- 
tional functions. If one further ignores the dependence of the free electron wave vector on 
the target vibrational state, then the body-frame T matrix can be written: 

(k,’v’lTlkvv) M c il-l’Ylm(i)~:mi(i‘) Sdsg”’(s)T~,m,,(s)ll,(s), (4) 
Il’mm’ 

where the vibrational functions are gv and vYi and the variable s is used to denote the 
internal vibrational coordinates. Thus the adiabatic nuclei approximation for vibrational 
excitation cross sections requires integrals of the individual fixed-nuclei T-matrix elements, 
which depend parametrically on internal target geometry, between the target vibrational 
wave functions. If we are not interested in the individual vibrational levels, then we can 
sum Eq. 4 over the final Y‘ levels, using the completeness relation 

~ l ? v ’ ( s ) 7 7 y ( s )  = 6(s - s’), 
Y 

to obtain the following expression for the total cross section: 

( 5 )  

In our earlier work on this system , we used the adiabatic nuclei treatment outlined 
above to examine the importance of nuclear motion on the total cross section, considering 
only the effect of the symmetric-stretch mode. Cadez et al. lo had noted that the resonance 
couples most strongly to symmetric-stretch motion, having observed energy-loss spectra 
at 4 eV for pure symmetric-stretch up to g,f=25. The right panel of Fig. 1 shows both 
the fixed-nuclei and adiabatic nuclei results for the total integrated cross section, along 
with measured values. The effect of nuclear motion is clearly to broaden and lower the 
resonance feature, bringing the results into better agreement with experiment. l1 It is also 
clear from this comparison that a more sophisticated treatment of nuclear motion is needed 
to quantitatively describe the cross section in the resonance region. 

3 Formal Resonance Theory 

9.1 Time-independent Formulation 

Computational treatments of resonant vibrational excitation are generally based on rigorous 
resonance scattering theory 12, formulated within the Born-Oppenheimer approximation. 
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The principle result of the theory is the so-called nuclear wave equation that governs the 
nuclear dynamics due to the resonance state(s): 

[E - E ‘ r e s  - K s ] &  (3) = ( $ ‘ r e s H e l P $ v ; )  ( $ ‘ r e , H e l P G + p P H e r ~ T e s ) ~ u i  (s), (7) 

where Xs is the nuclear kinetic energy operator,  he^ is the fixed-nuclei electronic Hamilto- 
nian, $res is the electronic resonance wave function and P projects onto the non-resonant 
background. This is an inhomogeneous wave equation which, due to the presence of the 
nuclear Greens’s function, G:, involves an effective Hamiltonian that is complex, non-local 
and energy dependent. Rather than deal directly with this equation, we use the simpler 
“boomerang” or local complex potential model: l3 

( E  - Ks - E r e s ( S )  + ir(S)/2)&(s) = h, (8) 

which can be derived by starting with Eq. 7 and making several simplifying approximations. 
The conditions under which these approximations are valid have been well documented 14. 

In Eq. (8) ,  Eres(s) and r(s) are the position (real part) and width (imaginary part) of the 
resonance energy surface, respectively and the ’entry amplitude’, &, is defined as: 

$ A s )  = (r(s)/27r)1’2% (9) 
The resonant T-matrix for vibrational excitation is obtained by projecting the solution of 
Eq. (8) onto the ’exit amplitude’, $,,,: 

Tuu, ( E )  = ($vl I&/). (10) 

Eq. (10) can equivalently be written as the matrix element of a nuclear Green’s function 
between entry and exit amplitudes: 

3.2 Time-dependent Formulation 

The differential equations of the boomerang model may be recast in a time-dependent 
formulation, as first shown by McCurdy and Turner 15, by writing the nuclear Green’s 
function as the Fourier transform of the propagator for the time-dependent Schrodinger 
equation. The resonant T-matrix for vibrational excitation is then expressed as: 

T,,, ( E )  = -i dteiEt ( $ u t  I q t )  (12) 

$v (13) 

I” 
with 

qt = e- iHt 

The meaning of Eqs. (12-14) is clear: the resonant transition amplitude for excitation 
is given as the Fourier transform of the overlap between a.wave packet propagating on a 
complex potential surface and a stationary packet determined by the final state. Since the 
potential surface is complex, the wave packet normalization is not conserved and the packet 
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decays exponentially as a function of time at a rate determined by the magnitude of the 
resonance width. 

For problems with only one nuclear degree of freedom, there are no obvious compu- 
tational advantages in choosing the time-dependent approach over the time-independent 
approach other than for the physical insight it offers into the problem. However, for prob- 
lems with multiple degrees of freedom, there are decided advantages to the time-dependent 
approach, since it does not involve the solution of large systems of complex linear equations 
and it can be made quite efficient, as we shall see. 

3.3 

The “standard” method for solving the time-dependent Schodinger equation proceeds by 
introducing a discrete of points for each degree of freedom and constructing an explicit 
solution of the first-order linear equations that represent the equations of motion for a 
wave packet propagating in time on the discrete grid. A variety of computational methods 
are available for approximating the propagator. The problem with the standard method 
is that the computational effort required scales exponentially with the number of degrees 
of freedom, making it prohibitively expensive to implement as the number of degrees of 
freedom grows. 

In the time- 
dependent Hartree (TDH) method, for example, the wave function is represented as a 
single product of one-dimensional functions, thereby simplifying the computational effort 
at the cost of a proper treatment of correlation between the degrees of freedom. The multi- 
configuration time-dependent Hartree (MDTDH) method l6 offers a practical alternative to 
the TDH method that retains the essential rigor of the standard method. In the MCTDH 
method, as in the standard method, we start with a time-independent orthonormal product 
basis set: 

Solving the Time-dependent Schodinger Equataon 

To remove this obstacle, approximate methods have been developed. 

where we have assumed that there are f degrees of freedom in a problem described by 
nuclear coordinates &I, . . .Qr. For computational efficiency, the basis functions, xz’, are 
chosen as the basis functions of a discrete variable representation(DVR) 17. 

The central idea in the MCTDH scheme is that one can employ a smaller, but now 
time-dependent, basis for expanding the wave function, i.e. 

n.  nt f 

Q(Q1, ...Qf, t )  = 2 ... 
j ,=1 j,=1 k = l  

with nk << Nk. The single-particle functions in turn are represented as linear combinations 
of the primitive basis 

i k = l  

Since both the coefficients, Ajl.. ,jf,  and the single-particle functions are time-dependent, 
the wave function representation is not unique. Uniqueness can be achieved by imposing 
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Figure 2. e- + CO2 fixed-nuclei integrated cross sections in 2A1 symmetry. Left panel: symmetric-stretch 
dependence in linear geometry. Right panel: bend-angle dependence at equilibrium CO bond distance. 

additional constraints on the single-particle functions which keep them orthonormal for all 
times 16. 

In our calculations on CO2, we have tested the accuracy of the MCTDH scheme by 
carrying out boomerang calculations in both 1D and 2D using both the standard method and 
MCTDH method. The two methods produced virtually identical results for this problem. 
For the 3D calculations, we used only the MCTDH method. 

4 Computational Results for CO2 

4.1 Electronic Resonance Energy Surface 

To recapitulate briefly, we first carry out fixed-nuclei scattering calculations, using the 
complex Kohn method, at a number of different nuclear geometries. To date, we have 
considered both symmetric-stretch and bending geometries. From these calculations, we 
obtain a resonance energy and width at each geometry from a Breit-Wigner fit of the 
electronic scattering data. This data defines a complex potential energy surface on which 
the time-dependent wave packet dynamics calculations are carried out. We also use the 
computed potential energy surface of the neutral COz molecule to compute the initial and 
final target vibrational wave functions. Fig. 2 gives a representative sampling of the fixed- 
nuclei 2111,(2A1) cross sections for linear(bent) geometries. The left panel of the figure the 
shows that, as the molecule is stretched from its equilibrium position, the resonance energy 
drops and the width decreases. The right panel shows that bending the molecule causes the 
resonance to broaden dramatically as it decreases in energy. From results such as these, we 
are able to construct the resonance energy and width surfaces shown in Figure 3. 

One notes that the resonance width goes to zero as the molecule is either stretched or 
bent sufficiently, reflecting the known fact 18J9 that the 2A1 state of COT becomes a stable 
negative ion, i.e is electronically bound, at such geometries. The topology of the width 
surface shows that for 00 bond distances less than 5 bohr, bending the molecule causes the 
resonance width to increase sharply before it eventually turns over at larger angles. This 
behavior will be seen to have a significant effect on the vibrational excitation cross sections. 

There are several points to be made when considering these results. Symmetric-stretch 
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Figure 3. Complex 'A1 resonance energy of CO, a function of symmetric-stretch distance and bend angle. 
Left panel shows the real part of the energy surface and the right panel shows the corresponding width. 

motion with zero bend angle does not change the symmetry of the molecule and hence does 
not significantly change the angular momentum character of the resonance, whose lowest 1 
component at equilibrium is pwave. Bending the molecule, however, breaks the degeneracy 
of the 211, resonance and mixes an s-wave component into the 2A1 resonance. There is no 
angular momentim barrier associated with an s-wave so it is not surprising that such an 
admixture causes the lifetime of the resonance to decrease. It should also be noted that 
bending causes the initially degenerate 211, resonance to split into 2A1 and 2B1 components 
and that in these initial calculations we have only considered the 2A1 resonance state. 

4.2 One-dimensional Boomerang Results 

We first computed cross sections for symmetric-stretch excitation using a one-dimensional 
boomerang treatment that constrained the nuclei to lie along a line. Cadez et al. lo had 
previously carried out such calculations, using semi-empirically determined resonance pa- 
rameters chosen to give a best fit to their measured cross sections. Figure 4 shows our 1D 
results for the resonant elastic and 0 + 1 vibrational excitation cross sections. The results 
at this level give something of a textbook picture of a 'diatomic' shape resonance, similar 
to what is found in N2, with deep, well-defined interference structures 13. Experiment 10*20, 

however, shows structure that is far less pronounced than what these 1D results predict, 
with very shallow valleys between adjacent peaks. That Cadez et al. lo were able to produce 
so little structure with their model calculations can be understood by comparing their em- 
pirically determined resonance parameters with our calculated results. While the real part 
of the resonance curve they derived is very close to our ab initio result (as is should be, since 
this parameter determines the position and overall envelope of the cross section), the width 
function they derived is significantly larger than our results in the critical regions that the 
wave packet samples. This comparison serves to highlight the limitations of a 1D treatment 
and provided much of the impetus for the multi-dimensional studies we undertook. 
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Figure 4. One-dimensional (symmetric-stretch) boomerang results for e- 
tionally inelastic (0 3 1) cross sections. 

3 2  elastic (0 -+ 0) and vibra- 

4.3 Multi-dimensional Results 

The multi-dimensional wave packet calculations were carried out using normal coordinates, 
with the restriction that the two CO bond distances were restricted to be the same. The 
symmetric-stretch coordinate,SI, and the doubly degenerate bend coordinates, and $26, 

are defined as: 

Si = ~ R C O S ~  (18) 

(19) S& + S&, = R2 sin2 O/(l+ m ~ / ( 2 r n , ) ) ~  

The vibrational wave functions of the neutral target were approximated as uncoupled prod- 
ucts of normal coordinate wave functions. We carried out calculations MCTDH calculations 
in both two- and three-dimensions. The 2D calculations restrict the nuclei to move in a 
fixed plane by considering only one of the two degenerate bending modes. Figure 5 shows 
results for the vibrationally elastic cross sections. The left panel compares the resonant 
elastic cross sections computed in lD, 2D and 3D, and shows that the pronounced interfer- 
ence features seen in the 1D calculations are strongly damped in 2D since the wave packet 
decays rapidly as it samples the non-linear regions of the resonance surface where the width 
is large. The 3D calculations show no interference structure at all. To compare with ex- 
periment, we must add the non-resonant background cross section to the resonant values 
provided by the boomerang calculations. Those values were taken from our earlier adiabatic 
nuclei calculations and added to the 3D boomerang results to produce the results shown 
in the right panel of Fig. 5 .  Of the two sets of experimental data shown 'i9, our results are 
in better agreement with the results of Tanaka et al. '. 

We now turn to the vibrational excitation cross sections which are shown in Fig. 6. The 
0 t 1 symmetric-stretch [(O,O, 0) t (1,0, O)] cross sections, computed in lD, 2D and 3D, 
are shown in the left panel. While the magnitude and shape of the overall envelope of the 
cross section is seen to be rather insensitive to the dimensionality of the calculation, the 
pattern of the interference behavior is seen to follow the same trends observed in the case 
of the elastic cross sections. The right panel shows the 0 t 2[(0,0,0) + (0,2, O)] bending 
cross sections in 2D and 3D. (We note that the resonance model gives zero probability for 
exciting an odd number of bending quanta from the ground-state because of the symmetry 
of the 2 A ~  resonance surface.) We again find that the 3D result shows no interference 
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Figure 6. Integrated vibrationally inelastic cross sections for e- + COz. Left panel: resonant symmetric- 
stretch ( O , O ,  0) -+ (1,0,0) cross sections from 1, 2 and 3D boomerang calculations. Right panel: resonant 
bending (0, 0,O)  + (0,2,0) cross sections from 2 and 3D boomerang calculations. 

structure, but there is a noticable rise in the background cross section, in both 2D and 3D, 
that appears at low collision energies. 

There is an accidental near degeneracy, or Fermi resonance, between the (1,0,0) and 
(0,2,0) vibrational levels of COT. For this reason, the normal mode description of the 
vibrational wave functions we have been using is not valid, as the true wave functions of 
this “Fermi dyad” are almost 50-50 mixtures of zeroth-order symmetric-stretch and bend 
states 21. Therefore, to make a meaningful comparison with experiment, we must compute 

icpeoc: submitted to Rinton on August 13, 2001 10 



- luwer Fermi 
............... u p p r  Fermi 

. ',.. . _ _  unperturbed stretch 
i ., 

: :  . i unperturbed bend , .  . .  
i it-, 
i / i  \ 
,: / i  \ 

+ i 
: ! - loaerFermi,abinitio . . .  *~ '; : ........... upprFermi 

; , .  i AupprFermi,measured - 

2 4 6 
Incident Energy (eV) 

0 
0 

5 ,  I 

4 1  

F 

U 

1 

0 
0 

A 

A 

I 

Figure 7. The effect of Fermi resonance on vibrationally inelastic cross sections for e- + CO; . Left panel: 
comparison of vibrational excitation cross sections computed using unperturbed and perturbed (Ferrni dyad) 
representations of the vibrational wave functions. Right panel: Comparison of computed cross sections for 
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the cross sections from appropriate linear combinations of the computed excitation ampli- 
tudes that represent the proper admixture of the zeroth-order states that describe the wave 
functions for the two components of the dyad. These results are shown if Figure 7. The 
effect of the Fermi resonance on the cross sections is strikingly important, with shifts in the 
peak positions of N .5 eV and significant changes in the shape of the cross sections. The 
calculated results are also seen to be in rather good agreement with experiment 20. On the 
low energy side of the resonance profile (<3 eV), we find a nonvanishing background value 
for both cross sections, while experiment indicates that only the upper Fermi level has a 
nonzero background. 

5 Discussion 

Resonant electron collisions with polyatomic molecules provide an opportunity to explore a 
rich body of physics involving the channeling of energy into various nuclear degrees of free- 
dom. Our calculations on the e- + COz system demonstrate the feasibility of approaching 
such a problem completely from first principles and clearly show the importance of a multi- 
dimensional treatment of the dynamics. While our calculations have clearly been successful 
in explaining much of observed observed experimental data, a number of issues remain to 
be explained. 

Using decisively improved electron spectrometers with a resolution of 7 meV, Allan 22 

has just announced that he was able to resolve the two peaks of the COz dyad and has 
published new values for the vibrational excitation cross sections, at a fixed angle, with 
very high energy resolution. His results show that there is indeed very weak interference 
structure of about the same scale that we found in our 2D calculations. We hasten to 
add that our calculations so far have only treated the 2A1 component of the resonance. 
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Preliminary calculations show that the width of the 2B1 resonance, which is degenerate 
with 2A1 in linear geometry, has very little dependence on the bend angle. Therefore, we 
expect wave packet calculations on this other surface to  show more structure. Moreover, 
interference effects arising from non-adiabatic coupling between the two surfaces might also 
account for the vanishing background cross section for the lower component of the Fermi 
dyad. These intriguing possibilities clearly indicate that there is more work to  be done on 
this problem. 
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